DEPARTMENT OF MATHEMATICS

B.A. / B.Sc.-III (Practical) Examination 2010-2011

Subject: MATHEMATICS (New Syllabus)

Paper: IV(a) Numerical Analysis

QUESTION BANK

Time: 3 hours Marks: 50

UNIT-I

1) Define the term percentage error. If $u=3v^7-6v$ Find the percentage error in u at v=1, if the error in v is 0.05.

- 2) Define the terms absolute and relative errors. If $y=\frac{0.31x+2.73}{x+0.35}$, where the coefficients are rounded off. Find the absolute and relative error in y when $x=0.5\pm0.1$
- 3) If $u=\frac{5xy^2}{z^3}$ then find maximum relative error at $\Delta x=\Delta y=\Delta z=0.001$ and x=y=z=1
- 4) Find the real root of $x^3 x 1 = 0$, using Bisection method.
- 5) Find the real root of $x^3 x^2 1 = 0$ up to three decimal places using Bisection method.
- 6) Use iterative method to find a real root of the following equation, correct to four decimal places $x = \frac{1}{(x+1)^2}$.
- 7) Use iterative method to find a real root of the following equation, correct to four decimal places $x = (5 x)^{\frac{1}{3}}$.
- 8) Use iterative method to find a real root of the following equation, correct upto four decimal places sinx = 10(x 1).
- 9) Establish the formula $x_{i+1} = \frac{1}{2}(x_i + \frac{N}{x_i})$ and hence compute the value of $\sqrt{2}$ correct to six decimal places.

Use newton Raphson method to obtain a root and correct to three decimal places of the following equations:

- 10) sinx = 1 x 11) $x^4 + x^2 80 = 0$ 12)3x = cosx + 1.
- 13) Find $\sqrt[3]{12}$ by Nweton's method.
- 14) Find a double root of $x^3 3x^2 + 4 = 0$ by Generalised Newton's method.
- 15) Using Ramanujan's method find a real root of the equation $xe^x = 1$.

- 16) Find the root of the equation sin x = 1 x by Ramanujan's method.
- 17) Find the smallest root of the equation $f(x) = x^3 6x^2 + 11x 6 = 0$.
- 18) Using Ramanujan's method, find the real root of the equation

$$1 - x + \frac{x^2}{(2!)^2} - \frac{x^3}{(3!)^2} + \frac{x^4}{(4!)^2} - \dots = 0.$$

- 19) Find the root of the equation $f(x) = x^3 2x 5 = 0$ which lies between 2 & 3 by Muller's method.
- 20) Use Muller's method to find a root of the equation $x^3 x 1 = 0$.

UNIT-II

- 21) Using the difference operator prove the following (i) $\mu = \sqrt{1+rac{\delta^2}{4}}$
- (ii) $1 + \mu^2 \delta^2 = (1 + \frac{\delta^2}{2})^2$
- 22) Find u_6 if $u_0=-3$, $u_1=6$, $u_2=8$, $u_3=12$ and $3^{\rm rd}$ differences are constant.
- 23) Find a cubic polynomial which takes the values

х	(0	1	2	3	4	5
y	1	1	2	4	8	15	26

- 24) If $y_0=2649$, $y_2=2707$, $y_3=2967$, $y_4=2950$, $y_5=2696$ and $y_6=2834$ then find y_1 .
- 25) Prove the following

a)
$$u_x = u_{x-1} + \Delta u_{x-2} + \Delta^2 u_{x-3} + \dots + \Delta^{n-1} u_{x-n} + \Delta^n u_{x-n}$$

b)
$$u_x + x_{c_1} \Delta^2 u_{x-1} + x_{c_2} \Delta^4 u_{x-2} + \dots = u_0 + x_{c_1} \Delta u_1 + x_{c_2} \Delta^2 u_2 + \dots$$

26) From the following table ,find the number of students who secured mark between 60 and 70.

Marks obtained	0-40	40-60	60-80	80-100	100-120
Number of students	250	120	100	70	50

27) Find the cubic polynomial which takes the values:

$$y(1) = 24$$
, $y(3) = 120$, $y(5) = 336$, $y(7) = 720$. Hence obtain $y(8)$.

28) The following data gives the melting point of an alloy of lead and zinc; θ is the temperature in degree centigrade;x is the percent of lead. Find θ when x = 84.

x	40	50	60	70	80	90
θ	184	204	226	250	276	304

29) From the following table, find the value of $e^{1.17}$ by using Gauss forward formula.

x	1.00	1.05	1.10	1.15	1.20	1.25	1.30
e^x	2.7183	2.8577	3.0042	3.1582	3.3201	3.4903	3.6693

30) The following values of x and y are given .Find the value of y(0.543).

x	0.1	0.2	0.3	0.4	0.5	0.6	0.7
y(x)	2.631	3.328	4.097	4.944	5.875	6.896	8.013

31) Use Gauss interpolation formula to find y_{41} with help of following data $y_{30}=3678.2,\ y_{35}=2995.1,\ y_{40}=2400.1,\ y_{45}=1876.2,\ y_{50}=1416.2$

32) By using central difference formula find the value of log 337.5 satisfying the following table

x	310	320	330	340	350	360
logx	2.4014	2.5052	2.5185	2.5315	2.5441	2.5563

33) Values of $y=\sqrt{x}$ are listed in the following table, which are rounded off to 5 decimal places. Find $\sqrt{1.12}$ by using Stirling's formula

x	1.00	1.05	1.10	1.15	1.20	1.25	1.30
$y = \sqrt{x}$	1.00000	1.02470	1.04881	1.07238	1.09544	1.11803	1.14017

34) By using Lagrange's formula, express the following rational fraction as sum of partial fractions $\frac{x^2+6x+1}{(x^2-1)(x^2-10x+24)}$.

35) By means of Lagrange's formula prove that approximately

$$y_0 = \frac{1}{2} (y_1 + y_{-1}) - \frac{1}{8} \left[\frac{1}{2} (y_3 - y_1) - \frac{1}{2} (y_{-1} - y_{-3}) \right]$$

36) Apply Lagrange's formula to find the root of f(x) = 0 when f(30) = -30, f(34) = -13, f(38) = 3, f(42) = 18.

37) Use Stirling's formula to find
$$u_{32}$$
 for the following table $u_{20}=14.035,\ u_{25}=13.674,\ u_{30}=13.257,\ u_{35}=12.734,\ u_{40}=12.089,\ u_{45}=11.309.$

38) Construct the divided difference table for the given data and evaluate f(1).

х	-4	-2	-1	0	2	5	10
f(x)	469	47	7	1	-5	271	7091

39) Use Newton's divided difference interpolation to obtain a polynomial f(x) satisfying the following data of values and hence find f(5.)

\boldsymbol{x}	-1	0	3	6	7
f(x)	3	-6	39	822	1611

40) Prove that the third order divided difference of the function $f(x) = \frac{1}{x}$ with arguments a, b, c, d is $-\frac{1}{abcd}$.

UNIT-III

41) Fit a straight line of the form y = a + bx to the data

х	0	5	10	15	20	25	30
у	10	14	19	25	31	36	39

42) Find best values of a, b, c so that the parabola $y = a + bx + cx^2$ fits the data

х	1.0	1.5	2.0	2.5	3.0	3.5	4.0
y	1.1	1.2	1.5	2.6	2.8	3.3	4.1

43) Fit a second degree parabola of the $y = ax^2 + bx + c$ to the following data.

x	0	1	2	3	4
y	1	5	10	22	38

44) Determine the constants a and b by the method of least squares such that $y=ae^{bx}$ fits the following data:

x	2	4	6	8	10
y	4.077	11.084	30.128	81.897	222.62

45) Fit a function of the form $y = ax^b$ to the following data:

X	2	4	7	10	20	40	60	80
у	43	25	18	13	8	5	3	2

46) Find the values of a_0 and a_1 so that $y = a_0 + a_1 x$ fits the data given in the table

х	0	1	2	3	4
у	1.0	2.9	4.8	6.7	8.6

47) Find $\frac{d}{dx}(J_0)$ at x=0.1 from the data given in the table:

x	0.0	0.1	0.2	0.3	0.4
$J_0(x)$	1.0000	0.9975	0.9900	0.9776	0.9604

48) Find the first and second derivatives of f(x) at the point x=3.0 from the following table:

х	3.0	3.2	3.4	3.6	3.8	4.0
f(x)	-14.000	-10.032	-5.296	0.256	6.672	14.000

49) From the following table of values of x and y obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for x=2.2

\boldsymbol{x}	1.0	1.2	1.4	1.6	1.8	2.0	2.2
у	2.7183	3.3210	4.0552	4.9530	6.0496	7.3891	9.0250

50) The following table of values of x and y is given :

X	0	1	2	3	4	5	6
y	6.9897	7.4036	7.7815	8.1291	8.4510	8.7506	9.0309

Find
$$\frac{dy}{dx}$$
 at $x = 3$.

51) From the following values of x and y, find $\frac{dy}{dx}$ when x = 6.

x	4.5	5.0	5.5	6.0	6.5	7.0	7.5
у	9.69	12.90	16.71	21.18	26.37	32.34	39.15

52) Find the minimum and maximum values of the functions from the following table

x	0	1	2	3	4	5
f(x)	0	0.25	0	2.25	16.00	56.25

- 53) Evaluate by using Trapezoidal rule
 - a) $\int_0^{\pi} t \sin t \, dt$ (with 6 strips)
 - b) $\int_{-2}^{2} \frac{t}{5+2t} dt$ (with 8 strips)
- 54) When a train is moving at 30 miles an hour, steam is burnt off and breaks are applied. The speed of the train in miles per hour after t seconds is given by :

	t	0	5	10	15	20	25	30	35	40
-	v	30	24	19.5	16	13.6	11.7	10.8	8.5	7.0

Determine how far the train has moved in 40 seconds.

- 55) Evaluate $\int_0^{\frac{\pi}{2}} \sqrt{\sin\theta} \ d\theta$, using Simpson's rule with $h = \frac{\pi}{12}$.
- 56) Use the Simpson's $\frac{3^{th}}{8}$ rule to obtain an approximation of $\int_0^{0.3} (1 8x^3)^{\frac{1}{2}} dx$ with h=0.05.
- 57) Evaluate $\int_0^1 cosxdx$ using h=0.2.
- 58) Find the value of $\int_3^7 x^2 \log x \, dx$ by taking 8 strips using Boole's rule.
- 59) Use Weedle's rule to obtain an approximate value of π from the formula $\int_0^1 \frac{1}{1+x^2} dx = \frac{\pi}{4}.$
- 60) Apply Trapezoidal and Simpson's rules to the integral $I = \int_0^1 \sqrt{1 x^2} dx$ by dividing the range into 10 equal parts.

UNIT-IV

61) Use Matrix inversion method to solve the system of equation:

$$3x + 2y + 4z = 7$$
, $2x + y + z = 7$, $x + 3y + 5z = 2$.

62) Use Matrix inversion method to solve the system of equation:

$$x + 2y + 3z = 10$$
, $2x - 3y + z = 1$, $3x + y - 2z = 9$.

63) Solve the following system of equations using Gauss elimination method:

$$x_1 - 2x_2 - x_4 = 2$$
, $2x_1 + 2x_2 + x_3 + 2x_4 = 7$
 $3x_1 - x_2 - 2x_3 - x_4 = 3$, $x_1 - 2x_4 = 0$.

64) Solve the following system of equations using Gauss elimination method:

$$2x_1 + x_2 + 4x_3 = 12$$
, $8x_1 - 3x_2 + 2x_3 = 20$, $4x_1 + 11x_2 - x_3 = 33$

65) Solve the following system of equations using Factorization method:

$$5x - 2y + z = 4$$
, $7x + y - 5z = 8$, $3x + 7y + 4z = 10$.

66) Solve the following system of equations using Factorization method:

$$2x - 3y + 10z = 3$$
, $-x + 4y + 2z = 20$, $5x + 2y + z = -12$.

67) Solve the following system of equations using Jacobi's iterative method:

$$10x + 2y + z = 9$$
, $2x + 20y - 2z = -44$, $-2x + 3y + 10z = 22$.

68) Apply Gauss-siedal iterative method to solve:

$$10x + y + z = 12$$
, $2x + 10y + z = 13$, $2x + 2y + 10z = 14$.

69) Apply Gauss-siedal iterative method to solve:

$$27x + 6y - z = 85$$
, $6x + 15y + 2z = 72$, $x + y + 54z = 110$.

70) Solve the following system of equations using Jacobi's itterative method:

$$17x_1 + 65x_2 - 13x_3 + 50x_4 = 84$$
, $12x_1 + 16x_2 + 37x_3 + 18x_4 = 25$
 $56x_1 + 23x_2 + 11x_3 - 19x_4 = 36$, $3x_1 - 5x_2 + 47x_3 + 10x_4 = 18$.

- 71) Using Taylor's series method to find the value of y(0.1) and y(0.2) if y(x) satisfies $\frac{dy}{dx} = x y^2$ with y(0) = 1.
- 72) Solve $\frac{dy}{dx} = x + y$ by Taylor's series method starting with $x_0 = 1$, $y_0 = 0$ and carry to x = 1.2 with h = 0.1. Compare the final result with the value of explicit solution.

- 73) Using Picard's method solve $\frac{dy}{dx} = 1 + xy$ with y(0) = 1. Find $y(0.1), y(0.2) \dots y(0.5)$.
- 74) Use Picard's method to approximate y upto 3 decimal places when x=0.2. Given that y(0)=1 and $\frac{dy}{dx}=x-y$.
- 75) Using Euler's method, solve the following initial value problems:

i)
$$\frac{dy}{dx} + 2y = 0$$
, $y(0) = 1$

- ii) $\frac{dy}{dx} 1 = y^2$, y(0) = 0 in each case take h = 0.1 and obtain y(0.1), y(0.2), y(0.3).
- 76) Given $\frac{dy}{dx} = x^2 + y$, y(0) = 1 determine y(0.02), y(0.04), y(0.06) using modified Euler's method
- 77) Find y when x=0.1, x=0.2, x=0.3 from the following initial value problem by Runge-Kutta's 4^{th} order method $y'=x-y^2$, y(0)=1
- 78) Given $\frac{dy}{dx} = 1 + y^2$, where y = 0 when x = 0, find y(0.2), y(0.4), y(0.6) by Runge-Kutta's 4th order method.
- 79) Apply Milne's method to the equation $y' = x + y^2$ with y(0) = 0 to find y(0.8). (take h = 0.2 to obtain initial values)
- 80) Using Milen's method solve the differential equation $(1+x)\frac{dy}{dx}+y=0$ with y(0)=2. Find y(1.5). (take h=0.5 to obtain initial values)